The university campus is no easy typology. During daytime it is occupied by a large number of people with similar needs – studying, learning, socializing, eating and exploring – but outside regular work and study hours this bustling area of activity changes into a deserted space. The campus of the University of Rotterdam has recently gotten some urban allure with a new meeting place: the Erasmus Pavilion. This relatively small-scale building of 32 x 32 metres includes a grand café, theatre, study areas and consultation rooms.

In 2007, the university held an invited competition for the development of a vibrant, sustainable campus with a distinct heart. The area was at that time completely cluttered with an eclectic mix of buildings from different periods. The new masterplan proposed by the competition winners, urban design office Juurlink + Geluk, in collaboration with Studio Sputnik, creates order in this chaos by introducing two circulation axes for cyclists and pedestrians, oriented perpendicular to
These divide the campus into a southern part, where the faculty buildings will be densely concentrated, and a northern portion reserved for open squares, green space and ponds. The Erasmus Pavilion, designed by Powerhouse Company and De Zwarte Hond, plays a key role in the plan. Adjacent to the new plaza of the campus, at the point where the two axes intersect, the pavilion creates a dynamic meeting place. Its best chance of success lies not only in the coherence of functionally designed square metres, but mainly in how visitors experience the space.

‘Our starting point was researching the spatial qualities of grand cafés in the city,’ says Nanne de Ru, one of the founders of Powerhouse Company (see Interview, A10 #44). What makes these places so attractive? A good patio, with lots of sun for a long time and little wind, attracts people like a good menu. But according to De Ru, a ‘human scale’ is at least as important. In the pavilion this manifests in a flared, wooden ceiling, which also offers a nice contrast to the rectilinear main building a bit further on. That concrete complex, designed by Rotterdam architect Cornelis Eiffers (1898-1987), is unlikely to be thought of as expressively designed. Simultaneously, the pavilion’s material refers to the design of Eiffers, as the panelling is of the same wood as the original interior from 1970.

Anyone entering the pavilion through the café sees the wooden bulge floating in the middle of the space. Around it is a walkway...
that leads visitors past the bar, study and consultation areas. Inside the wooden ‘hat’, as De Ru himself calls the structure, one finds the theatre with its stage on wheels. This object is fully retractable, allowing the maximum capacity to be expanded to accommodate 400 standing individuals. The ‘hat’ is also the building’s eye-catcher in the evenings, the walls behind the panelling are painted red and can be illuminated, creating a warm glow as the light shines through.

A glass ‘box’ is placed around the theatre hall. The transparent walls ensure that this usually inwardly oriented space is nevertheless open and inviting. Furthermore, the glass allows the space within to become an extension of the plaza. The stairs on the south side that connect the theatre with the lower lying café link seamlessly to the exterior stairs as well. Incorporating variations in the terrain’s elevation – the road lies several metres above the plaza – as part of the building’s design, the architects have created an enjoyable dynamic. The stairs, ramps and asymmetric solutions divest the glass box of its angularity and make a connection with the human scale.

Whether you come for a bite to eat, to study, or to see a performance, the space feels pleasant for everyone. This is due to the clever arrangement of functions. The study and consultation rooms are located on the north-east, where sunlight hardly shines inside, while the grand café and terrace are on the west, where visitors can long enjoy the sun during nice weather. Dynamic slats on the exterior make it possible to precisely regulate the light filtering inside. The curve of the panels is equal to the curve of the sun, and through the asymmetric suspension of the slats – specially developed for this project – they fit seamlessly with the circular termination of the screen. This ‘living’ skin is an ingenious finding, and emphasizes the dynamic character of the pavilion within the campus.

A particularly clever aspect of the project is how the building is completely transparent, yet also safe and intimate. This is above all a matter of details – and these have been ensured by an adept’s touch. The well proportioned space and its interaction with its surroundings make the pavilion the lively heart that the university so desired.

ERASMUS PAVILION STUDENT CENTRE, 2010–2013

Architect: Powerhouse Company and De Zwarte Hond

Landscape architect: Juulink + Geluk together with Studio Spuntik

Client: Erasmus University Rotterdam

Address: Burgemeester Oudlaan 50, Rotterdam

Info: www.powerhouse-company.com, www.dezwartehond.nl

(Campus hot spot, Rotterdam)
The Erasmus University Student Pavilion, Rotterdam
Architect: Powerhouse Company & de Zwarte Hond
Wood: American Red Oak
BETTERING BRUTALISM

ROTKM (NL) — The main building on the campus of the University of Rotterdam, designed by architect Cornelis Elffers, is a classic example of Brutalist concrete architecture from the 1960s and 70s. However, its weighty character and the chilly interiors of the lecture halls no longer fit with the image a contemporary university wishes to convey in the year 2013. In line with the redevelopment of the entire campus (see p. 20), the university complex therefore received a refurbishment under the direction of architect Gerard Frishert. The interior of the building was made more attractive and better equipped for students, without compromising its original architecture.

The large windows, which allow plenty of natural light to flow inside, were also preserved. Especially eye-catching are the new ceilings of solid red oak that have replaced the original metal slat ceilings, which were vanished a dark brown colour. Several considerations played a role in choosing American red oak with a clear varnish for the new look. For example, it had to be fire retardant and provide a good balance with the austere concrete architecture — light and warm in colour.

More than 3000 m² of this wood now adorns the ceilings in the main corridor, the extensive stairwell, auditoriums and even the exterior, under the building’s large overhangs. All these oak strips have also given the monumental building an attractive entrance, wherein complex patterns are formed by wooden slats that follow its corners, curves and cantilevers in different directions. This has been accomplished using the Derako Linear open acoustic system, with a rail structure that fastens the 15 x 70 mm red oak slats in place with clips, and without using disrupting or unsightly nails or screws. Between the individual strips are open joints of nineteen millimetres lined with black, non-woven tissue with sound-dampening properties. Through this clip-method of attachment the red oak can expand or shrink naturally in response to changes in temperature or moisture, a characteristic inherent to this particular type of wood. (NM/HOFNAGELS)

The interior of the main building on the campus of the University of Rotterdam, designed by architect Cornelis Elffers, is a classic example of Brutalist concrete architecture from the 1960s and 70s. However, its weighty character and the chilly interiors of the lecture halls no longer fit with the image a contemporary university wishes to convey in the year 2013. In line with the redevelopment of the entire campus (see p. 20), the university complex therefore received a refurbishment under the direction of architect Gerard Frishert. The interior of the building was made more attractive and better equipped for students, without compromising its original architecture.

The large windows, which allow plenty of natural light to flow inside, were also preserved. Especially eye-catching are the new ceilings of solid red oak that have replaced the original metal slat ceilings, which were vanished a dark brown colour. Several considerations played a role in choosing American red oak with a clear varnish for the new look. For example, it had to be fire retardant and provide a good balance with the austere concrete architecture — light and warm in colour.

More than 3000 m² of this wood now adorns the ceilings in the main corridor, the extensive stairwell, auditoriums and even the exterior, under the building’s large overhangs. All these oak strips have also given the monumental building an attractive entrance, wherein complex patterns are formed by wooden slats that follow its corners, curves and cantilevers in different directions. This has been accomplished using the Derako Linear open acoustic system, with a rail structure that fastens the 15 x 70 mm red oak slats in place with clips, and without using disrupting or unsightly nails or screws. Between the individual strips are open joints of nineteen millimetres lined with black, non-woven tissue with sound-dampening properties. Through this clip-method of attachment the red oak can expand or shrink naturally in response to changes in temperature or moisture, a characteristic inherent to this particular type of wood. (NM/HOFNAGELS)

ERASMUS C BUILDING, 2013
Architect FRISHERT-CELAC Client Erasmus University Rotterdam Ceiling specialist Termag d.o.o Address Burgemeester Oudaan 50, Rotterdam Info: info@foreco.nl

100% renewable
Tested on durability class 1
Low maintenance
16.10.13 16:47
100% organic
From sustainably managed forests
Enhancement by cross-linking
No coating required
Non-toxic and recyclable
Based on biopolymers
9-10-2013 13:03:02
Applicable in damp-open constructions

Shoffice

LONDON (UK) — Whomever still has room in their backyard and desires to telecommute more often may want to consider placing this shed-cum-office there. Disappointingly, many such structures do not make use of the biggest advantage of working in the garden: the outdoor feel. Usually, a garden shed is a rectangular, completely enclosed wooden box. This garden office, on the other hand, a design by London-based architect Platform 5, is a glazed working space that nestles into an extruded timber elliptical shell, curling over itself like a wood shaving to form a small terrace on the lawn. Two sky lights — a glazed one above the desk and the other open to the sky — bring light into the workspace.

The so-called ‘Shoffice’ (shed + office) is located in the rear garden of a terraced property, meaning that access was restricted to those materials which could be brought through the house. A desire to maximize prefabrication, allowing waste to be minimized and the precision of construction to be high, had to be balanced against these constraints. Discrete mini-plinth foundations were adopted as the most economic solution, and also allow the lawn to run through the structure. As a result, the curved form could not be shaped into an arch, as this would have required ties at ground level between the foundations. The structure was therefore designed to be rigid in its own right, with the stiffness provided by eight-millimetre-thick, laser-cut steel hoops incorporated into the curved form at both front and rear. Stressed-skin timber boxes span between these hoops to create the curved structural deck, which is clad in oak boards. (NM/HOFNAGELS)

SHOFFICE, 2013